Simulating Quantum Circuits with Sparse Output Distributions

Martin Schwarz1, Maarten Van den Nest2

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin
Arnimallee 14, D-14195 Berlin-Dahlem, Germany

2Max Planck Institut für Quantenoptik,
Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

Quant. Inf. Comp. (accepted), arXiv:1310.6749
Overview

• Classical simulation of quantum circuits
• Quantum circuits with sparse output distributions
• Sketch of the proof
Classical sim. of quantum circuits

Strong simulation: compute $O(poly(n))$ bits of output probabilities
Weak simulation: sampling output distribution (or compute $O(log(n))$ bits)

Families of simulable quantum circuits, often defined by

- restricted set of input states
- restricted gate set (non-universal)
- restricted measurements (few quibts)
Computationally Tractable (CT) states

Definition[^VdN11]: A state is called *computationally tractable (CT)*, if
(a) $p_x = |\langle x | \psi \rangle|^2$ can be sampled efficiently classically, and if
(b) $\langle x | \psi \rangle$ can be computed efficiently (polynomial in the bit size)

A whole theory around CT states and operations on them exists.[^VdN11]

CT states capture two key properties of several important families of simulable quantum states, such as
- states generated by poly-size Clifford circuits,
- nearest-neighbor matchgate circuits,
- matrix product states (MPS) with polynomial bond dimension,
- bounded tree-width circuits,
- normalizer circuits over finite Abelian groups (acting on coset states)
- etc.

New class of circuits we can simulate

reversible circuit (e.g. Toffoli, CNOTs)

approximately sparse output distribution

computationally tractable state = \textit{CT state}^{[14]}

Compare: Shor’s quantum algorithm

\[|0\rangle \quad \mathcal{F} \quad \mathcal{F}^{-1} \]

\[|0\rangle \quad U^x_a \]

modular exponentiation

\[c-U^x_a : |x\rangle|y\rangle \mapsto |x\rangle|ya^x \mod N\rangle \]
Approximate sparseness

- **Def. t-sparse:** A quantum state $|\psi\rangle$ written in the computational basis $|x\rangle$ is called t-sparse, if at most t of its amplitudes $\langle x|\psi \rangle$ are non-zero. The set of the respective basis states is also called the *support* of $|\psi\rangle$.

- **Def. ε-close:** Two quantum states $|\psi\rangle, |\varphi\rangle$ are called ε-close, if $\| |\psi\rangle - |\varphi\rangle \|_2 \leq \varepsilon$ in ℓ_2 norm.

- **Def. ε-approximately t-sparse:** A quantum state $|\psi\rangle$ written in the computational basis $|x\rangle$ is called t-sparse, if there exists a t-sparse state $|\psi\rangle$ that is ε-close to $|\varphi\rangle$.

- **Def: additive approximation:** A function $f: x \mapsto p_x$ can be additively approx. With error ε and probability $1-\delta$, if there is a randomized algorithm computing q_x, s.t. $|p_x - q_x| < \varepsilon$ in time $\text{poly}(n, 1/\varepsilon, \log(1/\delta))$.

 (Analogous definitions apply to probability distributions and ℓ_1 norm.)
Approximate sparseness

\[|\langle x|\psi|\rangle|^2 \]

| \psi \rangle

\[O(2^n) \]
probabilities non-zero

\[\Omega(2^{-n}) \]

all probabilities

\[\text{not sparse} \]
probabilities too small to be estimated
Approximate sparseness

$|\langle x|\psi\rangle|^2$

$|\psi\rangle$

$|0\rangle|1\rangle \ldots$

$|2^n - 1\rangle|x\rangle$

$O(2^n/poly(n))$

probabilities non-zero

all probabilities $
\Omega(poly(n)/2^n)$

→ not sparse

Shor's algorithm: $\Omega(N/\log(N))$ amplitudes non-zero. non-zero elements cannot be identified
Approximate sparseness

\[O(\text{poly}(n)) \]

probabilities non-zero

\[\Omega(1/\text{poly}(n)) \]

all non-zero probabilities

\(\Rightarrow \) sparse!

elements can be identified!
probabilities can be estimated!
Approximate sparseness

\[O(\text{poly}(n)) \]

probabilities non-zero and large

\[|\langle x|\psi\rangle|^2 \]

\[|\psi\rangle \]

\[|0\rangle|1\rangle \ldots \]

\[|2^n \rangle - 1\rangle \]

\[|x\rangle \]

noise

→ approx. sparse
still works with noise
Main result

Theorem. Consider a unitary n-qubit quantum circuit composed of two blocks $C = U_2 U_1$ with input state $|\psi_{in}\rangle$. Suppose that the following conditions are fulfilled:
(a) the state $U_1 |\psi_{in}\rangle$ obtained after applying the first block is CT,
(b1) the second block U_2 is the QFT modulo 2^n or its inverse, or
(b2) the second block U_2 is a tensor product of unitaries $u_1 \otimes \cdots \otimes u_n$
(c) the final state $|\psi_{out}\rangle = C |\psi_{in}\rangle$ is promised to be $\sqrt{\varepsilon}$-approximately t-sparse for some $\varepsilon \leq 1/6$ and some t.

Then there exists a randomized classical algorithm with runtime $\text{poly}(n, t, 1/\varepsilon, \log 1/\delta)$ which outputs (by means of listing all nonzero amplitudes) an s-sparse state $|\psi\rangle$ which, with probability at least $1 - \delta$, is $O(\sqrt{\varepsilon})$-close to $|\psi_{out}\rangle$, where $s = O(t/\varepsilon)$.

(Theorem is stated for case of amplitudes and 2-norm.
Analogous theorem is true for probabilities and 1-norm.)
Simulating quantum circuits classically

\[|\psi_{in}\rangle \xrightarrow{U_1} |\psi\rangle \xrightarrow{\mathcal{F}^{-1}} \text{approximately sparse output distribution} \]

computationally tractable state

= CT state\(^{[14]}\)

Simulating quantum circuits classically

\[|\psi_{in}\rangle \xrightarrow{U_1} |\psi\rangle \]

A computationally tractable state = \textit{CT state}[14]

\[U_{2,1} \]
\[U_{2,2} \]
\[U_{2,3} \]

\textit{approximately sparse output distribution}
Shor’s algorithm (quantum part)

\[|0\rangle \quad \mathcal{F} \quad \mathcal{F}^{-1} \]

\[|1\rangle \quad U^x_a \]

modular exponentiation

\[c-U^x_a : |x\rangle|y\rangle \rightarrow |x\rangle|ya^x \mod N\rangle \]

NO approximately sparse output distribution
Main result (again)

Theorem. Consider a unitary n-qubit quantum circuit composed of two blocks $C = U_2 U_1$ with input state $|\psi_{in}\rangle$. Suppose that the following conditions are fulfilled:

(a) the state $U_1 |\psi_{in}\rangle$ obtained after applying the first block is CT,
(b1) the second block U_2 is the QFT modulo 2^n or its inverse, or
(b2) the second block U_2 is a tensor product of unitaries $u_1 \otimes \cdots \otimes u_n$
(c) the final state $|\psi_{out}\rangle = C |\psi_{in}\rangle$ is promised to be $\sqrt{\varepsilon}$-approximately t-sparse for some $\varepsilon \leq 1/6$ and some t.

Then there exists a randomized classical algorithm with runtime $\text{poly}(n, t, 1/\varepsilon, \log \frac{1}{\delta})$ which outputs (by means of listing all nonzero amplitudes) an s-sparse state $|\psi\rangle$ which, with probability at least $1 - \delta$, is $O(\sqrt{\varepsilon})$-close to $|\psi_{out}\rangle$, where $s = O(t/\varepsilon)$.

(Theorem is stated for case of amplitudes and 2-norm. Analogous theorem is true for probabilities and 1-norm.)
Proof sketch

Main theorem requires to approximate list of outcome probabilities such as

\[p(y) = \langle CT | [\mathcal{F}^\dagger P(y) \mathcal{F}] \otimes I | CT \rangle \]

where \(|y_1 \cdots y_m \rangle \langle y_1 \cdots y_m | \otimes I \equiv P(y) \) is a projector on \(m \)-bit string \(y \), and \(p(y) \) big.

To prove theorem, show that

1. \(\rightarrow \) function \(p(y) \) can be additively approximated for all marginals of \(y_i \)
2. \(\rightarrow \) list of \(y \) for all large \(p(y) \) can be approximated using marginals

(further: recover phases not just magnitudes, show how to sample from list)
CT states, Fourier basis, marginals

Generalized Pauli operators
- defined on d-level system with basis states $|x\rangle$, $x \in \mathbb{Z}_d$ as

 \[
 X_d|x\rangle = |x + 1\rangle \\
 Z_d|x\rangle = e^{\frac{2\pi i x}{d}}|x\rangle
 \]

 where $x+1$ is defined modulo d.

 - Note that the order of both X and Z is d.

Fourier transforms over \mathbb{Z}
- let $|\mathcal{F}_d\rangle$ be the Fourier transform over \mathbb{Z}_d, i.e. for $d=2^n$

 \[
 \mathcal{F}_{2^n} = \frac{1}{\sqrt{2^n}} \sum_{x,y \in \mathbb{Z}_{2^n}} \exp \left(\frac{2\pi i x y}{2^n} \right) |x\rangle\langle y|
 \]

 - then it follows that $\mathcal{F}_d^\dagger Z_d \mathcal{F}_d = X_d$. and $\mathcal{F}_d Z_d \mathcal{F}_d^\dagger = X_d^\dagger$.

\[p(y) = \langle \text{CT} | [\mathcal{F}_d^\dagger P(y) \mathcal{F}_d] \otimes I \langle \text{CT} | \langle y_1 \cdots y_m | y_1 \cdots y_m | \otimes I \equiv P(y)\]
CT states, Fourier basis, marginals

Proof idea: Express $P(y)$ in terms of Pauli operators, with $d=2^k$, reduce to standard results on CT states.

(1) Indeed, $P(y)$ is projector onto the 1-eigenspace of

$$M := \alpha y Z^{2^k-m}$$

where $\alpha y Z^{2^k-m} |\tilde{x}\rangle = |\tilde{x}\rangle$ with $\alpha := e^{-\frac{2\pi i}{2^m}}$, iff $\hat{x} \mod 2^m = \hat{y}$

where \hat{y} is the integer value of bit string y.

(2) To arrive at the projector, we can average over the group generated by M

$$P(y) = \frac{1}{2^m} \sum_{u=0}^{2^m-1} M^u$$
(3) But now we can Fourier transform $P(y)$

\[
P(y) = \frac{1}{2^m} \sum_{u=0}^{2^m-1} M^u
\]

\[
\mathcal{F}^\dagger P(y) \mathcal{F} = \frac{1}{2^m} \sum_{u=0}^{2^m-1} N^u
\]

Thus we have switched Z to X operators, which are \textit{basis preserving}

\[
p(y_1 \cdots y_m) = \frac{1}{2^m} \sum_{u=0}^{2^m-1} \langle \text{CT} | N^u \otimes I | \text{CT} \rangle.
\]

where expectation values of basis preserving operators on CT states can be additively approximated by standard results on CT states14, as well as the sum over u.

Proof sketch

Main theorem requires to approximate list of outcome probabilities such as

\[p(y) = \langle \text{CT} \lvert \mathcal{F}^\dagger P(y) \mathcal{F} \rvert \otimes I \lvert \text{CT} \rangle \]

where \(|y_1 \cdots y_m\rangle \langle y_1 \cdots y_m| \otimes I \equiv P(y) \) is a projector on \(m \)-bit string \(y \), and \(p(y) \) big.

To prove theorem, show that

1. \(\rightarrow \) function \(p(y) \) can be additively approximated for all marginals of \(y_i \)
2. \(\rightarrow \) list of \(y \) for all large \(p(y) \) can be approximated using marginals

(further: recover phases not just magnitudes, show how to sample from list)
Finding strings with large probabilities

Theorem 10. Let \(\mathcal{P} = \{p_x : x \in B_k\} \) be a probability distribution. Let \(\mathcal{P}_m \) denote the marginal probability distribution of the first \(m \) bits, for every \(m \) ranging from 1 to \(k \) (with \(\mathcal{P}_k \equiv \mathcal{P} \)). Suppose that all distributions \(\mathcal{P}_m \) are additively approximable. Then the following holds: given \(\theta, \pi > 0 \), there exists a randomized classical algorithm with runtime \(\text{poly}(k, 1/\theta, \log(1/\pi)) \) which outputs a list \(L = \{x^1, \ldots, x^l\} \) where \(l \leq 2/\theta \) and where each \(x^i \) is an \(k \)-bit string such that, with probability at least \(1 - \pi \):

(a) for all \(y \in L \), it holds that \(p(y) \geq \frac{\theta}{2} \);

(b) every \(k \)-bit string \(x \) satisfying \(p(x) \geq \theta \) belongs to the list \(L \);

The key idea of the proof is to

- perform a “binary search“ over all bit strings
- show that the search terminates in polynomial time
- argue that the strings found indeed satisfy (a)-(b)

This theorem is a generalization of a classical result from the learning theory of Boolean functions\(^{[KM91,GM89]}\).

Finding strings with large probabilities

“Binary search“ – use the fact, that \(p(0) \) and \(p(1) \) can be approximated, i.e. we compute a \(c(x) \), s.t. \(|p(x)-c(x)|<\theta/4 \), recurse if \(c(x) \) is larger than \(3\theta/4 \).

\[
L_0 = \{\}
\]

\[
L_1 = \{0\} \cup \{1\}
\]

\[
L_2 = \{00\} \cup \{01\} \cup \{11\}
\]

\[
L_3 = \{000\} \cup \{011\} \cup \{110\} \cup \{111\}
\]

Terminate at level \(k \), if \(|L_k|>2/\theta \). Will never trigger, since \(|L_k| < 2/\theta \) due to norm=1!

(a) \(\leftarrow \) since for every \(x \) in the list \(c(x)>3\theta/4 \), and \(|p(x)-c(x)|<\theta/4 \rightarrow p(x)>\theta/2 \)

(b) \(\leftarrow \) show“if \(p(x_1...x_m)>2/\theta \), then \(x_1...x_m \in L_m “ \) Trivial for \(L_1 \). For any \(m \), suppose \(p(x_1...x_m)>\theta/2 \). Due to \(p(x_1...x_{m-1})>p(x_1...x_m) \rightarrow x_1...x_{m-1} \in L_{m-1} \rightarrow x_1...x_m \in L_m \)
Finding strings with large probabilities

(a) \leftarrow since for every x in the list, $c(x) > \frac{3\theta}{4}$ and $|p(x)-c(x)| < \frac{\theta}{4} \implies p(x) > \frac{\theta}{2}$

(b) \leftarrow show “if $p(x_1...x_m) > \frac{2}{\theta}$, then $x_1...x_m \in L_m$” Trivial for L_1.

For the recursion, suppose for any m, $p(x_1...x_m) > \frac{\theta}{2}$. Then, due to $p(x_1...x_{m-1}) > p(x_1...x_m) \implies x_1...x_{m-1} \in L_{m-1} \implies$ def. of L_m yields $x_1...x_m \in L_m$
Proof sketch

Main theorem requires to approximate list of outcome probabilities such as

\[p(y) = \langle CT | [\mathcal{F}^\dagger P(y) \mathcal{F}] \otimes I | CT \rangle \]

where \(|y_1 \cdots y_m \rangle \langle y_1 \cdots y_m | \otimes I \equiv P(y) \) is a projector on \(m \)-bit string \(y \), and \(p(y) \) big.

To prove theorem, show that

1. \(\rightarrow \) function \(p(y) \) can be additively approximated for all marginals of \(y_i \)
2. \(\rightarrow \) list of \(y \) for all large \(p(y) \) can be approximated using marginals

(further: recover phases not just magnitudes, show how to sample from list)
Conclusions

• We have presented a new family of classically simulable quantum circuits, with a certain block structure and a novel assumption about the output probability distribution.

• The dense output distribution of Shor’s algorithm (or its generalizations) is a necessary feature for the (conjectured) exponential speed-up over classical computers.

• In order to extract meaningful information out of a dense superposition, additional structure (e.g. group structure) must be present, such that $O(poly(n))$ samples suffice to efficiently identify the structure.
Thank you!